

TABLE OF CONTENTS

INTRO	DUCTION		
7	TEST OBJECTIVES AND PROCED	OURES	1
2	2000 STATEWIDE GROWING CON	IDITIONS	2
\	ARIETY CHARACTERIZATION		3
RESUI	LTS: ALFALFA PERFORMA	NCE TESTS	
1	NORTHEASTERN KANSAS Powhattan, Brown County	Table 1	4
	Manhattan, Riley County Limited Irrigation	Table 2	5
1	NORTH CENTRAL KANSAS Belleville, Republic County	Table 3	6
\$	SOUTHEAST KANSAS Mound Valley, Labette Coun	ty Table 4	7
5	SOUTH CENTRAL KANSAS Hutchinson, Reno County	Table 5	8
Ş	Garden City, Finney County Irrigated	Table 6	9
APPEI	NDIX		
F	Fall dormancy and pest resistance re	atings of released varieties	11
E	Entrants in the 2000 Kansas Alfalfa	Performance Tests	12
E	Electronic Access and University Re	esearch Policy	13

2000 KANSAS ALFALFA PERFORMANCE TESTS

INTRODUCTION

TEST OBJECTIVES AND PROCEDURES

The Kansas Agricultural Experiment Station established an official alfalfa performance testing program in 1980 to provide Kansas growers with unbiased performance comparisons on alfalfa varieties marketed in the state. Each year, private companies are asked to enter varieties voluntarily at the locations slated for establishment that year. Announcements and entry forms are mailed to private companies in June for entry in fall-seeded tests. Companies enter varieties of their choice and pay entry fees to cover part of the costs of conducting the tests. Most tests are planted in mid-August or September; however, Southeast Kansas test usually is planted in the Individual tests are conducted for a minimum of 3 years. New tests are established during the final production year of the previous

The Manhattan test was established as a "no insecticide" test to evaluate variety differences in resistance and/or tolerance to infestations of insect pests such as alfalfa weevil and potato leafhopper. The susceptible check variety, Ranger, was included as a basis for comparison. Other tests are treated with insecticide to control weevils, armyworms, or other pests that might decimate the crop, but rarely for leafhoppers.

Descriptive information is presented with the results for each test. This information, including soil type, establishment methods, fertilization, pest control, irrigation, harvest dates, and growing conditions unique to that location, can help explain test and/or variety performance.

FORAGE YIELDS were estimated by harvesting four replications of each variety with a plot harvester. The amount of forage produced from a specific area (35-80 ft²) was weighed, and a subsample was taken to determine moisture content. This information was used to convert the plot weights to tons of dry matter per acre for each cutting, the season total, and the total for each previous season as presented in Tables 1-6.

The forage yield over the lifetime of a particular test is presented as the total tons of dry matter produced per acre, as the total tons of 15% moisture hay, and as a percentage of the test average.

Each table is separated into three sections. The first lists released cultivars that are generally available on the seed market or soon will be. The second section includes experimental cultivars that were entered in the test before being released for sale. These experimental lines often represent an earlier generation of seed than that used for the released cultivars. The third section includes summary statistics unique to that test.

At the bottom of each column, the <u>Least Significant Difference</u> (LSD) is listed at the 0.05 and 0.20 levels. These values indicate how large a difference is needed to be confident that one variety is superior to another. Differences between varieties that are equal to or greater than the 0.05 LSD have only a 1 in 20 chance of being due to chance or error. Differences equal to or greater than the 0.20 LSD have a 1 in 5 chance of being caused by chance or error.

The Coefficient of Variability (CV) provides an estimate of the consistency of the results of a particular test. In these tests, CV's below 10% generally indicate reliable, uniform data, whereas CV's of 10-15% are not uncommon and generally indicate that the data are acceptable for rough comparisons. Tests with CV's over 15% may still be useful, but variety comparisons lack precision.

The Mean Coefficient of Variability (MCV) is similar to the CV in that it serves as an indicator of test precision. The MCV is calculated by dividing the 0.05 LSD by the test mean (average) and multiplying by 100. The MCV reveals the percent difference required to detect differences between varieties with 95% confidence. Many alfalfa breeders and testers agree that tests with MCV values greater than 10% are of little benefit.

2000 STATEWIDE GROWING CONDITIONS

Warm temperatures accelerated alfalfa development for much of the growing season (Figure 1), but soil moisture deficits delayed and reduced late-season harvests (Figure 2). All four harvests started earlier than the average (Figure The first three harvests were completed ahead of last year's and the 5-year average. The fourth harvest was slowed considerably in mid-August by extremely hot, dry weather that delayed regrowth after the third harvest in many areas. Some areas had essentially no regrowth. (From Crop-Weather reports. Kansas Agricultural Statistics, Topeka).

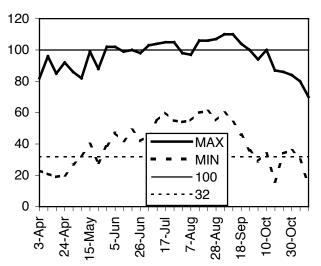


Figure 1. 2000 Kansas weekly maximum and minimum temperatures.

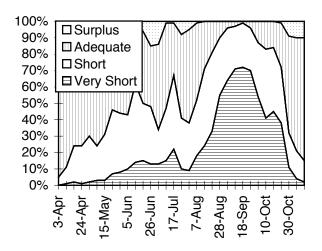


Figure 2. Status of statewide topsoil moisture.

The hot, dry conditions in August and September reduced statewide average yields and total alfalfa hay production compared to last year. The November 9 Kansas Agricultural Statistics report predicted a 0.7 ton per acre decrease in average yield from 4.4 tons per acre in 1999 to 3.7 tons per acre in 2000. Total alfalfa acreage in 2000 was unchanged from that in 1999 at 850,000 acres. The lower yield per acre resulted in a decrease in total alfalfa hay production from 3.7 million tons in 1999 to 3.1 million tons in 2000.

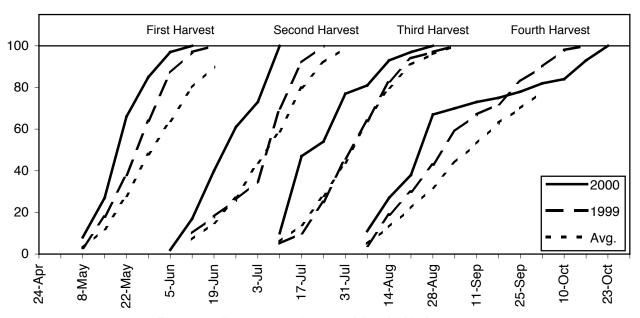


Figure 3. Progress of statewide alfalfa harvest.

Alfalfa weevil remained the insect of most concern to alfalfa growers in 2000. Infestations were first noted in several counties in south central Kansas in early March. Weevils continued to damage alfalfa fields in central and southwest Kansas during late March and April. Army cutworm populations required treatment of some fields in south central and southwest Kansas in early spring. Aphid populations also began to increase in March and April. Pea aphids had reached high levels in some fields by early May, but beneficial parasites appeared to keep them from causing serious damage. In early September, adults of several potential pests of newly seeded alfalfa appeared in insect traps: beet armyworm, fall armyworm, garden webworm, corn earworm, yellow striped armyworm, and alfalfa butterfly. Pest populations varied greatly from field to field. (From Cooperative Economic Insect Survey reports, Kansas Department of Agriculture and Kansas Insect Newsletter, KSU Extension Entomology).

Alfalfa stem nematode (Ditylenchus dipsaci) appeared to be more widespread in 2000 than in the past. Tim Todd, KSU plant nematologist, confirmed the alfalfa stem nematode in several south central and southeast counties in March April. The typical spring diseases, and leptosphaerulina leaf spot, spring black stem, and phytophthora root rot, appeared in samples sent to the Plant Disease Diagnostic Clinic in May. Samples sent later in the season showed symptoms of alfalfa mosaic virus, leaf rust, and summer black stem. (From Plant Disease Alerts, KSU Department of Plant Pathology).

VARIETY CHARACTERIZATION

For variety selection, producers should consider the performance of a variety in each of the current tests where it appears, its performance over time and locations relative to familiar or check varieties, and the disease and insect resistance characteristics that are potentially important in their situation.

Tables 1-6 contain updated yield data from individual tests currently in progress. First-season yields for a spring-planted test are often more variable than yields in subsequent years. Season totals are important, but yield distribution during the season may vary between varieties. Examine yields from individual cuttings to determine if differences in yield distribution exist. Yield totals over many years provide the best measure of variety performance over time.

The appendices provide additional descriptive and contact information. Appendix 1 contains fall dormancy, disease resistance, and insect resistance ratings. These ratings were obtained primarily from the annual 'Fall Dormancy & Pest Resistance Ratings for Alfalfa Varieties' pamphlet published by the Alfalfa Council. That report summarizes information submitted by developers of alfalfa varieties as part of the variety registration process. The Association of Official Seed Certifying Agencies (AOSCA) National Alfalfa Variety Review Board (NAVRB) reviewed ratings before they were published. Companies submitting varieties for the tests provided ratings for some unregistered varieties. Appendix 2 contains marketing contacts for all released varieties included in the 2000 Kansas Alfalfa Performance Tests.

Fall dormancy values are based on the fall canopy height measured in Minnesota. Dormancy values generally are related to the speed of regrowth. The rapid regrowth types have higher values, and the slower regrowth types have lower values.

Table 1. Northeast Kansas, Powhattan Alfalfa Performance Test, Seeded August 1998.

		Forage Yield, 2000								
			tons/acr	е		Total				
		Dry	Matter		Total 15%	Total, % of				
NAME	5-13	6-23	8-1	Total	Moist.	Mean				
RELEASED CULTIVARS										
Dagger+EV	1.81	1.11	1.13	4.05	4.76	105				
DK 141	1.81	1.13	1.10	4.04	4.75	105				
Geneva	1.73	1.22	1.08	4.03	4.74	104				
Pioneer 54H55	1.69	1.11	1.22	4.01	4.72	104				
WL 232 HQ	1.67	1.10	1.21	3.98	4.68	103				
Spur	1.72	1.09	1.17	3.97	4.67	103				
Gold Plus	1.78	1.07	1.11	3.96	4.66	103				
WL 325 HQ	1.71	1.09	1.15	3.94	4.64	102				
Ace	1.78	1.07	1.05	3.91	4.60	101				
Depend+EV	1.59	1.12	1.16	3.87	4.55	100				
ProGro	1.61	1.12	1.13	3.86	4.54	100				
WL 324	1.60	1.10	1.16	3.86	4.54	100				
DK 142	1.67	1.09	1.09	3.85	4.53	100				
Pioneer 53V08	1.77	1.00	1.08	3.84	4.52	99				
Yielder	1.71	1.00	1.08	3.78	4.45	98				
Emperor	1.75	1.01	1.02	3.78	4.45	98				
Cimarron 3i	1.62	1.08	1.06	3.76	4.42	97				
TMF 4464	1.75	1.02	0.97	3.75	4.41	97				
Magnum V	1.67	1.04	1.04	3.74	4.40	97				
Kanza	1.52	1.06	1.14	3.72	4.38	96				
Amerigraze 401+Z	1.65	1.06	0.99	3.69	4.34	96				
ABT350	1.53	1.11	1.04	3.67	4.32	95				
Affinity+Z	1.61	0.99	1.03	3.62	4.26	94				
Perry	1.50	1.05	0.99	3.55	4.18	92				
EXPERIMENTAL STRAINS										
4G70	1.81	1.19	1.11	4.11	4.84	106				
C304	1.75	1.09	1.26	4.10	4.82	106				
ZC9751A	1.73	1.18	1.19	4.09	4.81	106				
C230	1.69	1.08	1.11	3.88	4.56	101				
ZC9741A	1.61	1.07	1.12	3.79	4.46	98				
ZC9740A	1.68	1.04	1.03	3.76	4.42	97				
ZH9731H	1.62	1.05	1.00	3.67	4.32	95				
SUMMARY STATISTICS	-									
Average	1.68	1.08	1.10	3.86	4.54	100				
LSD(0.05)	0.15	0.09	NS	0.23	0.27	6				
LSD(0.20)	0.08	0.04	0.08	0.12	0.14	3				
CV(%)	7.73	6.94	11.07	5.14	5.14	5				
MCV(%)	8.93	8.33	NS	5.96	5.96	6				

LOCATION: Northeast Kansas Site: Cornbelt Experiment Field County: Brown Town: Powhattan Soil: Grundy silty clay loam ESTABLISHMENT: 9/2/98; RCBD, 4 reps Plots 5'x20'; 4'x20' harvested 15 lb. seed/acre	2000 FERTILIZATION: 16.5-72-90 in December 2000 PEST CONTROL: An early-season weevil infestation was controlled by the first harvest.	2000 CONDITIONS: The test was clipped in 1999, but no yields are reported because of excessive variability. Dry winter and spring weather didn't replenish soil moisture as much as desired. The dry conditions intensified in late summer and prevented a fourth harvest.
---	--	--

Table 2. Northeast Kansas, Manhattan Alfalfa Performance Test, Seeded May 1999. **Limited Irrigation**

					Forage Yield								
								ton	s/acre				99-00
	Plant Height	Leaf	Hoppe	er Injury			l	Dry Ma	tter			Total,	Total,
	inches	F	Rating	1-5*			2000	1		1999	99-00	15%	% of
NAME	9-8	8-1	9-8	Average	6-6	7-3	8-1	9-8	Total		Total	Moist.	Mean
RELEASED CULTI	VARS												
645-II	13	1.6	2.4	2.0	3.46	1.80	2.01	1.30	8.58	1.97	10.55	12.41	113
NetYield500	12	2.4	4.3	3.4	3.48	2.05	1.85	1.21	8.59	1.91	10.50	12.35	112
Kanza	17	2.5	2.7	2.6	2.62	1.83	1.80	1.51	7.76	2.23	9.99	11.75	107
Abilene+Z	13	1.7	2.8	2.2	2.57	2.15	1.68	1.33	7.74	1.99	9.73	11.45	104
Jade II	13	2.4	3.2	2.8	2.67	2.00	1.66	1.35	7.67	1.99	9.66	11.36	103
Pioneer 54H69	17	1.6	2.4	2.0	2.87	1.75	1.40	1.55	7.56	1.97	9.53	11.21	102
Feast+EV	14	2.0	3.3	2.6	2.91	1.89	1.45	1.16	7.41	2.11	9.52	11.20	102
ABT 400SCL	15	1.7	2.4	2.1	2.77	1.87	1.48	1.40	7.53	1.95	9.48	11.15	101
Dagger+EV	14	1.5	3.1	2.3	2.58	1.96	1.71	1.31	7.56	1.73	9.29	10.93	99
Geneva	14	2.0	2.9	2.4	2.64	1.84	1.41	1.36	7.25	1.94	9.19	10.81	98
Ameriguard 302+Z	<u> </u>	1.9	2.2	2.0	2.68	1.73	1.51	1.40	7.32	1.80	9.12	10.73	97
Defense+EV	15	1.8	2.1	1.9	2.42	1.71	1.55	1.32	7.00	1.99	8.99	10.58	96
Perry	15	1.6	2.4	2.0	2.69	1.68	1.49	1.40	7.25	1.71	8.96	10.54	96
DK 131HG	16	1.1	1.3	1.2	2.21	1.64	1.50	1.40	6.75	1.93	8.68	10.21	93
Ranger	12	2.6	4.2	3.4	2.48	1.55	1.28	1.08	6.39	1.54	7.93	9.33	85
EXPERIMENTAL S	TRAINS												
ZG9840	13	1.5	2.7	2.2	3.03	1.84	1.78	1.32	7.97	1.96	9.93	11.68	106
ZC9842A	13	2.2	2.7	2.5	2.78	1.81	1.85	1.23	7.67	2.02	9.69	11.40	103
ZC9851A	15	1.1	2.2	1.6	2.70	1.94	1.84	1.30	7.79	1.76	9.55	11.24	102
W326	15	2.3	3.1	2.7	2.40	2.07	1.68	1.39	7.54	1.96	9.50	11.18	101
ZC9840A	13	1.4	2.7	2.0	2.95	1.76	1.58	1.41	7.70	1.75	9.45	11.12	101
ZC9650	16	1.4	2.4	1.9	2.62	1.83	1.55	1.46	7.47	1.96	9.43	11.09	101
ZC9841A	12	1.5	2.4	2.0	2.42	2.08	1.57	1.29	7.36	1.90	9.26	10.89	99
ZH9844H	14	1.1	1.1	1.0	2.41	1.58	1.57	1.41	6.97	2.17	9.14	10.75	98
ZH9841H	14	0.9	1.4	1.1	2.67	1.57	1.31	1.15	6.70	1.83	8.53	10.04	91
KS224	14	2.3	3.4	2.9	2.64	1.74	1.37	1.13	6.88	1.59	8.47	9.96	90
SUMMARY STATIS	TICS												
Average	14	1.8	2.6	2.2	2.71	1.83	1.59	1.33	7.46	1.91	9.37	11.02	100
LSD(0.05)	2	0.6	0.7	0.5	0.28	0.19	0.24	0.19	0.57	0.19	0.77	0.91	8
LSD(0.20)	1	0.3	0.4	0.2	0.14	0.10	0.12	0.10	0.29	0.15	0.39	0.46	4
CV(%)	11	27.9	23.5	17.9	8.67	9.03	12.76	12.35	6.43	8.60	5.44	5.44	5
MCV(%)	13	32.9	27.7	21.0	10.21	10.63	15.09	14.52	7.58	10.11	8.22	8.22	8

^{*}NAAIC Leaf Hopper Resistance Ratings:

- 1 No apparent injury

- 2 Very minor stunting and yellowing
 3 Moderate stunting, yellowing is evident on 20-40% of leaves
 4 Significant injury; plants show significant stunting with yellowing on 40-60% of leaves
 5 Severe injury; plants show severe stunting, yellowing or reddening evident on 60-100% of leaves

LOCATION: Northeast Kansas Site: Ashland Research Farm County: Riley Town: Manhattan Soil: Haynie very fine sand ESTABLISHMENT:	2000 FERTILIZATION: None 2000 PEST CONTROL: Insect infestations were not controlled, so that inherent	2000 CONDITIONS: Weevils caused moderate damage to the first harvest. Leaf hoppers caused noticeable damage to the thrid and fourth harvests. Two irrigations of 2 inches each were applied after the each of the last three cuttings. The first harvest was taken at 20% bloom, and
ESTABLISHMENT: 5/24/99; RCBD, 4 reps Plots 3'x15'; 3'x12' harvested 15 lb. seed/acre	2000 PEST CONTROL: Insect infestations were not controlled, so that inherent	

Table 3. North Central Kansas, Belleville Alfalfa Performance Test, Seeded Sept. 1997.

				Foraç	ge Yield e			98-00 Total, % of
			Dry	Matter			Total,	
		2000		1999	1998	98-00		
NAME	6-1	7-2	Total	Total	Total	Total	Moist.	Mean
Released Cultivars								
Dominator	2.01	0.96	2.97	8.41	6.44	17.82	20.96	110
DK 142	2.02	1.00	3.02	7.98	6.28	17.28	20.33	107
DK 127	1.78	0.81	2.59	8.08	6.29	16.96	19.95	105
WL 324	1.71	0.82	2.53	7.86	6.21	16.60	19.53	103
WL 325 HQ	1.89	0.80	2.69	7.79	6.01	16.49	19.40	102
Pioneer 5454	1.82	0.83	2.65	7.75	6.07	16.47	19.38	102
Spur	1.66	0.81	2.46	7.78	6.03	16.27	19.14	101
Asset	1.78	0.82	2.60	7.43	6.04	16.07	18.91	99
Perry	2.00	0.93	2.94	7.29	5.72	15.95	18.76	99
Depend+EV	1.65	0.74	2.39	7.33	6.06	15.78	18.56	98
Kanza	1.83	0.76	2.59	7.45	5.50	15.54	18.28	96
Experimental Strains								
ZN9541	1.80	0.78	2.57	7.35	5.65	15.57	18.32	96
ZN9540	1.86	0.82	2.68	7.20	5.64	15.52	18.26	96
ZN9646	1.65	0.73	2.38	7.33	5.74	15.45	18.18	96
ZC9641	2.36	1.04	3.40	6.20	5.09	14.69	17.28	91
Summary Statistics								
Average	1.85	0.84	2.70	7.55	5.92	16.17	19.02	100
LSD(0.05)	0.18	0.13	0.27	0.52	0.33	1.13	1.33	7
LSD(0.20)	0.09	0.06	0.14	0.40	0.26	0.57	0.67	4
CV(%)	8.20	12.63	8.53	5.77	4.71	3.50	3.50	4
MCV(%)	9.76	15.02	10.14	6.86	5.60	6.99	6.99	7

LOCATION: North Central Kansas	2000 FERTILIZATION:	2000 CONDITIONS:				
Site: North Central Kansas Exp. Field	18-46-0 in February and again	Drought conditions extending back to				
County: Republic	after first harvest	August of 1999 severely limited growth. Precipitation was less than 50% of				
Town: Belleville						
Soil: Crete silt loam		normal during the spring and summer.				
ESTABLISHMENT: 9/6/97; RCBD, 4 reps Plots 5'x15'; 3'x15' harvested 18 lb. seed/acre	2000 PEST CONTROL: None	Temperatures in August and September were much above normal. Very little regrowth occurred after the second harvest.				

Table 4. Southeast Kansas, Mound Valley Alfalfa Performance Test, Seeded April 1998.

	Forage Yield tons/acre 98-00										
				Dry	Matter	icre	98-00 Total,				
	-		2000		watter	1999	1998	98-00	Total 15%	% of	
NAME	5-5	6-13	7-11	8-14	Total	Total	Total	Total	Moist.	Mean	
RELEASED CULTIVARS		0.10		•							
	0.00	0.00	4.55	0.00	0.00	5.00	0.45	10.70	10.00	400	
Cimarron 3i	2.03	2.03	1.55	0.68	6.28	5.36	2.15	13.79	16.22	106	
WL 324	1.92	1.94	1.50	0.81	6.16	4.95	2.25	13.36	15.72	103	
Pioneer 54H55	2.05	2.06	1.56	0.78	6.43	4.72	2.18	13.33	15.68	103	
WL 326 GZ	1.96	2.05	1.58	0.77	6.35	4.76	2.17	13.28	15.62	102	
Emperor	1.94	2.02	1.53	0.75	6.25	4.80	2.19	13.24	15.58	102	
6420	1.93	1.97	1.48	0.78	6.15	5.01	2.08	13.24	15.58	102	
Amerigraze 401+Z	1.89	1.96	1.46	0.75	6.05	5.06	2.12	13.23	15.56	102	
ProGro	1.96	2.01	1.42	0.78	6.17	4.83	2.19	13.19	15.52	102	
DK 141	2.01	1.97	1.43	0.73	6.14	4.79	2.25	13.18	15.51	102	
631	1.88	1.83	1.47	0.75	5.93	4.91	2.21	13.05	15.35	101	
Stamina	1.81	1.97	1.48	0.76	6.02	5.05	1.98	13.05	15.35	101	
Sendero	1.75	1.96	1.45	0.80	5.96	4.84	2.19	12.99	15.28	100	
Perry	1.97	1.82	1.32	0.62	5.72	5.04	2.15	12.91	15.19	100	
Kanza	1.93	1.79	1.48	0.83	6.03	4.66	2.19	12.88	15.15	99	
DK 142	1.87	1.86	1.49	0.67	5.89	4.85	2.11	12.85	15.12	99	
Spur	1.78	1.90	1.41	0.76	5.86	4.72	1.97	12.55	14.76	97	
Gold Plus	1.77	1.93	1.38	0.75	5.82	4.61	2.09	12.52	14.73	97	
WL 325 HQ	1.83	1.80	1.41	0.77	5.80	4.38	2.03	12.21	14.36	94	
EXPERIMENTAL STRAINS											
ZC9751A	1.87	1.96	1.54	0.73	6.11	4.92	2.12	13.15	15.47	101	
CW 74013	1.87	2.04	1.40	0.73	6.04	4.83	2.20	13.07	15.38	101	
ZC9650	1.89	1.90	1.47	0.74	6.01	4.80	2.10	12.91	15.19	100	
CW 74031	1.87	1.86	1.52	0.72	5.97	4.78	2.12	12.87	15.14	99	
ZC9651	1.84	1.92	1.46	0.80	6.02	4.77	2.07	12.86	15.13	99	
CW 74034	1.86	1.85	1.51	0.80	6.01	4.83	2.00	12.84	15.11	99	
ZC9750A	1.95	1.74	1.52	0.84	6.05	4.72	2.03	12.80	15.06	99	
CW 5426	1.78	1.83	1.54	0.67	5.83	4.85	2.04	12.72	14.96	98	
CW 6408	1.79	1.96	1.48	0.71	5.93	4.72	2.04	12.69	14.93	98	
CW 75044	1.78	1.82	1.55	0.79	5.94	4.63	2.00	12.57	14.79	97	
SUMMARY STATISTICS		1.02	1.00	0.70	0.01	1.00	2.00	12.07	0		
Average	1.88	1.92	1.48	0.75	6.03	4.83	2.11	12.97	15.26	100	
LSD(0.05)	0.13	0.15	NS	0.75	0.03	0.29	0.14	0.73	0.86	6	
LSD(0.20)	0.13	0.13	NS	0.05	0.16	0.23	0.14	0.73	0.44	3	
CV(%)	6.08	6.54	8.22	10.21	4.31	5.12	5.73	2.88	2.88	3	
MCV(%)	7.16	7.70	NS	12.01	5.07	6.02	6.74	5.63	5.63	6	
, ,	T				5.07	I			5.05	- 0	
LOCATION: Southeast Kansas		FERTIL					ONDITI				
Site: Southeast Ag. Research Center	Febr	February 9, 2000; 20-50-200							as above	normal	
County: Labette								hes. The	iave		
Town: Mound Valley									ditions in		
Soil: Parsons silty clay loam		PEST C				and Se	eptembe	r. The ra	infall tota	l for	
ESTABLISHMENT:				n on Apı					was 1.72	inches,	
4/14/98; RCBD, 4 reps				I. Treate				of that co		ام طنط	
Plots 5'x30'; 3'x20' harvested	with Poast Plus on July 26 to September. As a result, the alfalfa										
15 lb. seed/acre		oi biueç	ງ ເພວວ.	control bluegrass.				not regrow after the August cutting.			

Table 5. South Central Kansas, Hutchinson Alfalfa Performance Test, Seeded Sept. 1999.

							For	age Yie	ld, 2000		
		Diametrialist				tons/acre					
		Plant Height - inches				Dry Matter				Total 15%	Total,
NAME	5-24	6-16	7-21	9-5	5-24			9-5	Total		% of Mean
RELEASED CULTIVARS											
WL 327	20	13	20	18	1.72	1.04	1.85	1.28	5.89	6.93	116
Magnum V	21	15	18	19	1.54	1.13	1.61	1.39	5.66	6.66	112
Aspire	21	16	18	20	1.52	1.16	1.63	1.34	5.65	6.65	112
Pioneer 54Q53	20	14	18	17	1.49	1.09	1.62	1.21	5.41	6.36	107
Forecast 1001	21	14	18	17	1.61	1.03	1.47	1.17	5.28	6.21	104
Kanza	20	15	18	21	1.35	1.02	1.56	1.23	5.16	6.07	102
DK 142	20	14	17	17	1.53	1.05	1.47	1.09	5.15	6.06	102
6420	20	13	17	17	1.48	0.92	1.60	1.12	5.12	6.02	101
Dagger+EV	19	13	17	17	1.50	0.97	1.34	1.20	5.01	5.89	99
Cimarron 3i	22	13	16	16	1.55	0.93	1.36	1.11	4.96	5.84	98
TMF 4464	19	13	17	18	1.48	0.95	1.44	1.07	4.94	5.81	98
WL 232 HQ	19	13	15	16	1.54	0.87	1.48	1.05	4.94	5.81	98
ABT350	20	15	17	17	1.41	0.98	1.45	1.08	4.90	5.76	97
Cimarron SR	21	14	16	17	1.43	0.90	1.52	1.03	4.88	5.74	96
DK 140	19	14	17	18	1.37	0.95	1.55	1.01	4.88	5.74	96
Abilene+Z	19	13	16	18	1.43	0.98	1.37	1.09	4.87	5.73	96
Award	20	15	17	17	1.53	0.97	1.36	0.99	4.86	5.72	96
Perry	20	13	16	17	1.51	0.86	1.40	1.00	4.77	5.61	94
Macon	19	14	18	17	1.05	0.87	1.50	0.95	4.37	5.14	86
EXPERIMENTAL STRAINS											
ZC9650	21	14	17	19	1.57	0.98	1.54	1.16	5.25	6.18	104
ZC9850A	19	12	17	16	1.36	0.88	1.52	1.15	4.92	5.79	97
SUMMARY STATISTICS											
Average	20	14	17	18	1.47	0.97	1.50	1.12	5.06	5.95	100
LSD(0.05)	1	1	2	2	0.18	0.10	0.22	0.17	0.46	0.54	9
LSD(0.20)	1	1	1	1	0.09	0.05	0.11	0.08	0.23	0.27	5
CV(%)	6	9	9	8	10.63	8.70	12.71	12.97	7.64	7.64	8
MCV(%)	7	11	11	9	12.53	10.27	NS	15.29	9.02	9.02	9
LOCATION: South Central Kansas	2000	FERTI	LIZATI	ON:		200	0 CON	DITION	IS:		
Site: South Central Experiment Field			ior to p			The	e fall aı	nd winte	er of 1999		
County: Beno			CONTE			l wa	rmer th	an norr	nal with a	above-no	ormal

County: Reno Town: Hutchinson Soil: Ost silt loam

ESTABLISHMENT:

9/14/99; RCBD, 4 reps Plots 5'x20', 3'x20' harvested

18 lb. seed/acre

2000 PEST CONTROL:

Poast Plus was applied on November 29, 1999 to control volunteer oats. Treated with insecticide on April 8 to control alfalfa weevil and again on August 18 to control a severe infestation of armyworm. The fall and winter of 1999-2000 were warmer than normal with above-normal precipitation in some months. The spring was cool and moist with uneven precipitation. Heavy rains in late July recharged soil moisture after the first two cuttings. Extremely hot, dry weather characterized August and September.

Table 6. Southwest Kansas, Garden City Alfalfa Performance Test, Seeded August 1999. Irrigated

	Forage Yield, 2000									
				s/acre			Total,			
NAME	5-30	7-5	ry Matte 8-14	9-19	Total	Total 15% Moist.	% of Mean			
RELEASED CULTIVARS	0 00		0	0.10	10141					
WL 327	4.46	2.75	2.84	2.17	12.21	14.36	104			
TMF 4464	4.47	2.74	2.81	2.16	12.16	14.31	104			
Magnum V	4.53	2.72	2.76	2.14	12.15	14.29	104			
Pioneer 54Q53	4.43	2.69	2.79	2.19	12.08	14.21	103			
Jade II	4.53	2.64	2.77	2.08	12.01	14.13	103			
Emperor	4.40	2.68	2.79	2.10	11.97	14.08	102			
Cimarron 3i	4.47	2.68	2.76	2.07	11.97	14.08	102			
Forecast 1001	4.28	2.67	2.77	2.16	11.87	13.96	101			
ABT 400SCL	4.29	2.71	2.76	2.12	11.87	13.96	101			
Pioneer 53V08	4.30	2.71	2.77	2.09	11.85	13.94	101			
Affinity+Z	4.44	2.63	2.76	2.03	11.84	13.93	101			
GH 750	4.36	2.65	2.74	2.04	11.77	13.85	101			
Aspire	4.09	2.69	2.82	2.18	11.77	13.85	101			
Dagger+EV	4.38	2.73	2.61	2.04	11.75	13.82	100			
Cimarron SR	4.33	2.70	2.68	2.04	11.73	13.80	100			
Abilene+Z	4.31	2.59	2.69	2.10	11.68	13.74	100			
FQ315	4.27	2.63	2.67	2.05	11.62	13.67	99			
6420	4.32	2.58	2.66	2.04	11.60	13.65	99			
DK 140	4.23	2.65	2.66	1.95	11.47	13.49	98			
DK 142	4.29	2.53	2.63	1.99	11.43	13.45	98			
ABT350	4.02	2.64	2.67	2.02	11.34	13.34	97			
Perry	4.32	2.54	2.54	1.91	11.30	13.29	96			
Award	4.09	2.49	2.59	2.02	11.18	13.15	95			
Kanza	3.84	2.42	2.49	2.09	10.83	12.74	92			

(continued)

Table 6. Southwest Kansas, Garden City Alfalfa Performance Test, Seeded August 1999.
Irrigated

	9								
	Forage Yield, 2000								
				s/acre		Total 15%	Total, % of		
NI A BAT		Dry Matter							
NAME	5-30	7-5	8-14	9-19	Total	Moist.	Mean		
EXPERIMENTAL STRAINS									
ZC9850A	4.48	2.65	2.74	2.23	12.10	14.24	103		
DS9705 HYB	4.43	2.69	2.73	2.13	11.98	14.09	102		
ZC9650	4.41	2.70	2.73	2.09	11.92	14.02	102		
DS9707 HYB	4.32	2.68	2.80	2.12	11.92	14.02	102		
ZC9853A	4.47	2.57	2.76	2.06	11.85	13.94	101		
ZC9851A	4.43	2.61	2.67	2.12	11.81	13.89	101		
DS9704 HYB	4.47	2.62	2.72	1.99	11.79	13.87	101		
CW 64025	4.24	2.63	2.69	2.11	11.67	13.73	100		
ZC9854A	4.43	2.58	2.65	1.99	11.64	13.69	99		
CW 84024	4.28	2.61	2.69	2.08	11.64	13.69	99		
CW 74033	4.10	2.65	2.64	2.10	11.48	13.51	98		
CW 74043	4.32	2.54	2.63	1.93	11.41	13.42	97		
ZC9840A	4.33	2.55	2.58	1.94	11.40	13.41	97		
CW 64018	4.21	2.53	2.61	2.06	11.40	13.41	97		
CW 84025	3.89	2.55	2.70	2.11	11.24	13.22	96		
ZC9841A	4.17	2.45	2.61	1.91	11.13	13.09	95		
ZC9842A	4.06	2.47	2.57	1.98	11.07	13.02	94		
SUMMARY STATISTICS									
Average	4.32	2.63	2.70	2.07	11.71	13.78	100		
LSD(0.05)	0.19	0.11	0.13	0.12	0.43	0.51	4		
LSD(0.20)	0.10	0.05	0.07	0.06	0.22	0.26	2		
CV(%)	3.82	3.43	4.25	4.87	3.17	3.17	3		
MCV(%)	4.47	4.02	4.98	5.71	3.71	3.71	4		

LOCATION: Southwest Kansas Site: Southwest ResExt. Center County: Finney Town: Garden City Soil: Keith silt loam ESTABLISHMENT: 8/24/99; RCBD, 4 reps Plots 3'x20'; 3'x20' harvested 32 lb. seed/acre	2000 FERTILIZATION: 22-104-0 applied at planting 2000 PEST CONTROL: None	2000 CONDITIONS: Early crop development was accelerated by the warm spring temperatures. Hot, dry conditions in August and September caused some stress to the fourth cutting.
---	---	---

Appendix 1: Varieties in 2000 Kansas Alfalfa Performance Tests with unverified fall dormancy and disease and insect resistance

	- "		OI.		,		ы .	α 11	<u>~</u>	U II.			<i>y</i> '	arra ar	sease and					-	110	_					0	NI	_
					Р	s		В		Α		N R									Р	s		В		Α	_	N R	
COMPANY	FE	3 V	F	Α	-	_	Р	_	S					С	OMPANY	F	В	٧	F	Α	-	_	Р		S			K	Р
NAME	DΨ	v w	w	Ν	R	Α	Α	Α	N	Н	N	Ν	L	N	IAME	D	W	W	W	N	R	Α	Α	Α	Ν	Н	Ν	Ν	L
AgriPro														Г	K 127	3	Н	R	R	Н	Н	Н	Н	М	R	Н	-	R	R
Dagger+EV	5 H	Η	Н	Н	Н	М	Н	М	R	-	-	L	L		K 131HG	3	Н	Н	Н	Н	Н	R	R	L	М	R	-	R	R
Defense+EV	3 ⊦	ΙН	Н	Н	Н	-	R	-	-	Н	-	-	-		K 140	4	Н	R	Н	Н	Н	Н	R	М	М	Н	-	М	M
Depend+EV	4 H	Н	Н	Н	Н	М	R	S	М	R	-	-	-		K 141	4	Н	Н	Н	Н	Н	R	R	-	М	Н	-	-	-
Dominator	4 H	l R	Н	Н	Н	-	R	-	М	R	-	-	-		K 142	4	Н	R	Н	R	Н	R	Н	-	R	Н	-	-	-
Feast+EV	3 F	Η	Н	R	Н	-	М	-	-	Н	-	-	-	M	ycogen														
Yielder	3 F	Η	Н	R	Н	-	R	-	-	-	-	-	-	Т	MF 4464	4	Н	Н	Н	Н	Н	-	R	-	М	R	-	-	-
ALLIED														N	C+														
Macon	4 F	Η	Н	Н	Н	Н	Н	-	-	-	-	-	-	J	ade II	4	Н	R	Н	R	Н	R	R	М	-	М	-	M I	M
America's Alfalfa														N	E AES & US	DA													
Abilene+Z	5 H	Н	Н	Н	Н	Μ	Н	М	R	R	-	-	-	F	erry													-	
Affinity+Z	4 H	Н	Н	Н	Н	-	R	-	R	R	-	-	-	F	langer	3	M	-	S	S	S	S	S	S	S	-	-	-	-
Amerigraze 401+2														N	etSeeds														
Ameriguard 302+2	Z3 F	Н	Н	Н	Н	-	R	-	R	Н	-	-	-	N	letYield500	4	Η	R	Н	R	Н	R	R	-	R	М	-	-	-
Emperor	4 F	Н	Н	Н	Н	M	R	-	-	Н	-	-	-	N	-														
Cargill															ieneva	4	Н	Η	Η	Н	Н	R	Н	L	R	Н	-	-	-
FQ315	3 ⊦	l R	Н	Н	Н	Н	R	-	R	Н	-	-	-		oneer														
Dairyland Seed														_	3V08													Н	
Forecast 1001	4 H														454													-	
Magnum V	4 ⊦	l R	Н	R	Н	R	R	M	R	М	-	M	М		4H55													Н	
Garst								IMRM						_	4H69													-	
631															4Q53	4	Н	Н	R	R	Н	M	M	-	Н	M	-	Н	Н
6420	4 F													_	ar			_	_	_		_							
645-II	3 F	Н	Н	Н	Н	-	Н	-	-	Н	-	-	-		sset													-	
Golden Harvest						_	_								endero													R	
GH 750	4 F	1 Н	Н	Н	Н	Н	Н	- M H				-	-		pur													M	
Great Plains					_	_	_	- RMR -							tamina		Н	Н	Н	Н	Н	Н	Н	-	Н	К	-	Н	Н
Cimarron 3i															-L Research							_							
Cimarron SR	4 H	1 H	Н	Н	Н	н	Н	-	Н	IVI	К	-	-		BT 400SCL													M I	
KS AES & USDA	۰.					_	_								BT350													-	
Kanza MBS	3 F	۱ -	-	-	-	н	н	-	-	-	-	-	-		ice													-	
Gold Plus	4 ⊢	ı D	ш	ш		ш	ш		ш	Ь					VL 232 HQ VL 324													L -	
ProGro	4 F														VL 324 VL 325 HQ													-	
Monsanto	4 F	וה	П	П	П	П	п	IVI	-	IVI	-	-	-		VL 325 FQ VI 326 G7													-	
Aspire	6 N	1 D	ш	ш	ш	ш	П	D	ш						VL 320 GZ VL 327	-												-	
Aspire	4 F												-	V	VL 321	4	11	П	11		-	п	-	-	П	11	•	-	-
					11	11	11	п	п	н			_																
Variety characteriz			des	<u>s:</u>				Fall dormancy						<u>atings:</u>							nce		ting						
FD = Fall dormancy rating										k va	arie	<u>ety</u>		Rating	<u>Code</u>							9	% Resistant plants						
BW = Bacterial wilt										ema	an			1	S	Susceptible							0-5%						
VW = Verticillium wilt									Vernal					2	L	Low Resistance							6-14%						
FW = Fusarium wilt									Ranger					3	M	Moderate Resistance							15-30%						
AN = Anthracnose race 1									Saranac					4	R	Resistance							31-50%						
PRR = Phytophthora root rot									Archer					5	Н	H High Resistance >5						>50	1%						
SAA = Spotted alfalfa aphid									ABI 700					6	 Not adequately tested 														
PA = Pea aphid									Dona Ana					7															
BAA = Blue alfalfa aphid									Maricopa					8	Fall dormancy and disease and insect res														
SN = Stem nematode										101				9	ratings are from Alfalfa Varieties, a publication								r th	е					
APH = Aphanomyces root rot race 1									1	887	,			10	Certified Alfalfa Seed Council, NAAIC cult														
SRKN = Southern															descriptions, or from developers of the varieti Blank spaces indicate that the variety has no														
NRKN = Northern	root	knc	ot ne	ema	ato	de									tested ade								Ly II	uo	. 10	. 50	.011		
PL = Potato leafhopper																-1		٠											
rL = rotato learnopper																												_	

Appendix 2: Entrants in 2000 Kansas Alfalfa Performance Tests.

AgriPro

AgriPro Seed PO Box 500 Slater, IA 50244 877-247-4776 www.agripro.com

ALLIED

Allied Seed Cooperative PO Box 945 Angola, IN 46703 800-813-5025

America's Alfalfa

America's Alfalfa PO Box 404 Princeton, IL 61356-0404 815-875-6426 www.americasalfalfa.com

Cargill

Cargill Hybrid Seeds PO Box 5645 Minneapolis, MN 55440 612-742-6731 www.seed.cargill.com

Dairyland

Dairyland Research 9728 S Clinton Corners Rd Clinton, WI 53525 608-676-2237

Garst

Garst Seed Co 219 E Garfield Greensburg, KS 67054 316-723-2454 www.garstseed.com

Golden Harvest

JC Robinson Seed Co 100 JC Robinson Blvd Waterloo, NE 68069 800-228-9906

Great Plains

Great Plains Research Co Inc 3624 Kildaire Farm Rd Apex, NC 27502 919-362-1583

KS AES & USDA

KSU - Foundation Seed 2200 Kimball Ave Manhattan, KS 66502 785-532-6115

MBS

MBS Inc 225 West 1st St Story City, IA 50248-1657 515-733-5274

Monsanto

Monsanto Seed 3100 Sycamore Rd DeKalb, IL 60115 815-758-9323 www.farmsource.com

Mycogen

Mycogen Seeds 301 Campus Drive Huxley, IA 50124 515-597-3284 www.mycogen.com

NC+

NC+ Hybrids PO Box 4408 1300 N 79th Lincoln, NE 68504 402-467-2517 www.nc-plus.com

NE AES & USDA

Foundation Seed Division UNL 3115 North 70th Lincoln, NE 68507-2104 402-472-4290

NetSeeds

NetSeeds 9001 Hickman Rd Suite 320 Urbandale, IA 50322 515-331-0939 www.netseeds.com

NK

Novartis Seeds Inc 1060 Wheatland Dr Buhler, KS 67522 316-543-2707 www.nk.com

Pioneer

Pioneer Hi-Bred Intl Inc PO Box 1150 Johnston, IA 50131-1150 515-334-6645 www.pioneer.com

Star

Advanced Genetics PO Box 414 Beloit, KS 67420 800-782-7611

W-L Research

W-L Research Inc 8701 W US Hwy 14 Evansville, WI 53536 608-882-4100 www.wlresearch.com

This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu.

For those interested in accessing crop performance testing information electronically, visit our World Wide Web site. Most of the information contained in this publication is available for viewing or downloading. The URL is http://www.ksu.edu/kscpt.

Excerpts from the

UNIVERSITY RESEARCH POLICY AGREEMENT WITH COOPERATING SEED COMPANIES

Permission is hereby given to Kansas State University to test varieties and/or hybrids designated on the attached entry forms in the manner indicated in the test announcements. I certify that seed submitted for testing is a true sample of the seed being offered for sale.

I understand that all results from Kansas Crop Performance Tests belong to the University and the public and shall be controlled by the University so as to produce the greatest benefit to the public. Performance data may be used in the following ways: 1) Tables may be reproduced in their entirety provided the source is referenced and data are not manipulated or reinterpreted; 2) Advertising statements by an individual company about the performance of its entries may be made as long as they are accurate statements about the data as published, with no reference to other companies' names or cultivars. In both cases, the following must be included with the reprint or ad citing the appropriate publication number and title: "See the official Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress 860 '2000 Kansas Performance Tests with Corn Hybrids', or the Kansas Crop Performance Test website, http://www.ksu.edu/kscpt, for details. Endorsement or recommendation by Kansas State University is not implied."

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name of work, Kansas State University, and the date the work was published.

MAIN STATION. MANHATTAN

Kraig Roozeboom, Associate Agronomist (Senior Author)

Paul St. Amand, Assistant Professor Alfalfa Breeding and Genetics

CONTRIBUTORS RESEARCH CENTERS

Joseph Moyer, Mound Valley Merle Witt, Garden City

EXPERIMENT FIELDS

William Heer, Hutchinson W. Barney Gordon, Belleville Larry Maddux, Powhattan

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan 66506 January 2001

It is the policy of Kansas State University Agricultural Experiment Station and Cooperative Extension Service that all persons shall have equal opportunity and

access to its educational programs, services, activities, and materials without regard to race, color,

religion, national origin, sex, age, or disability. Kansas State

University is an equal opportunity organization. These materials may be available in alternative formats. 3.6M